Searching for optimal size neural networks

نویسندگان

  • Tomasz Praczyk
  • T. PRACZYK
چکیده

Assembler Encoding represents a neural network in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix, which maintains all the information necessary to construct a network. To generate the programs and, in consequence, neural networks, evolutionary techniques are used. One of the problems in Assembler Encoding is to determine an optimal number of neurons in a neural network. To deal with this problem a current version of Assembler Encoding uses a solution that is time consuming and hence rather impractical. The paper proposes four other solutions to the problem mentioned. To test them, experiments in a predator-prey problem were carried out. The results of the experiments are included at the end of the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank

In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...

متن کامل

Introduce an Optimal Pricing Strategy Using the Parameter of "Contingency Analysis" Neplan Software in the Power MarketCase Study (Azerbaijan Electricity Network)

Overall price optimization strategy in the deregulated electricity market is one of the most important challenges for the participants, In this paper, we used Contingency Analysis Module of NEPLAN Software, a strategy of pricing to market participants is depicted.Each of power plants according to their size and share of the Contingency Analysis should be considered in the price of its hour. In ...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

Automatically searching near-optimal artificial neural networks

The idea of automatically searching neural networks that learn faster and generalize better is becoming increasingly widespread. In this paper, we present a new method for searching near-optimal artificial neural networks that include initial weights, transfer functions, architectures and learning rules that are specially tailored to a given problem. Experimental results have shown that the met...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011